Waste anaesthetic gases in Quebec hospitals

Bussières JF^{1,2}, Tanguay C¹, Legris M³

¹Pharmacy Department and Pharmacy Practice Research Unit, CHU Sainte-Justine, Montreal, ²Faculty of pharmacy, University of Montreal, Montreal, Canada,³Agence de la santé et des services sociaux de la Capitale-Nationale, Québec

Introduction

- In Quebec, Canada, there exists no concentration ceiling value for at least two anaesthetic gases: sevoflurane and desflurane.
- The National Institute for Occupational Safety and Health recommends a 2 ppm ceiling value for halogenated gases.
- There exists a risk of occupational exposure to waste anaesthetic gases at many steps of the drug-use process, namely at the reception, storage, administration and waste management steps.

Objectives

• The purpose of this study was to describe the airborne concentration of two anaesthetic gases in Quebec hospitals: sevoflurane and desflurane.

Methods

- Sevoflurane and desflurane air concentration were measured in three Quebec hospitals in 2011 and 2012.
- Air concentration was measured near the workers' breathing **zones** and in **fixed** locations on the following care units:
 - Pre-operative
 - Operating rooms
 - Intensive-care
 - Day surgery
 - Post-operative
- Sevoflurane air sampling was performed in fixed locations near the patients' breathing zones in pre-operative care units, intensivecare units and post-operative care units.
- Sevoflurane air sampling was also performed near the workers' breathing zones in pre-operative care units, operating rooms, day surgery units, intensive-care units and post-operative care units.
- Sevoflurane concentration was also measured directly at the exit of the ventilator for four patients in an intensive care unit.
- Desflurane air sampling was performed in fixed locations near the patients' breathing zones in pre-operative care units and post-operative care units.
- Desflurane air sampling was also performed near the workers' breathing zones in pre-operative care units, operating rooms, day surgery units and postoperative care units.
- Air sampling duration varied between two and eight hours.
- The limit of detection (LOD) varied between 0.07 ppm and 0.10 ppm for sevoflurane and between 0.03 ppm and 0.04 ppm for desflurane.

Université **m** de Montréal

Directly at the exit of the ventilator

Results

Table I. Sevoflurane exposure		
Location	Method (year)	
Pre-operative	Patient's breathing area (2011)	
	Workers' breathing area (2011)	
	Workers' breathing area (2011)	
Operating	Workers' breathing area (2011)	
rooms		
Intensive care	Patient's breathing area (2012)	
	Workers' breathing area (2012)	
Day surgery	Workers' breathing area (2011)	
Post- operative	Patient's breathing area (2011)	
	Workers' breathing area (2011)	

LOD: Limit of detection

- ◆ After a 30-minute period post-operation, sevoflurane concentrations measured at the exit of the ventilator were of 440, 512 and 720 ppm.
- Three hours post-operation, the mean concentration was 123 ppm.
- Sevoflurane was still exhaled by the patients five hours post-operation (Fig.1).

Figure 1. Sevoflurane concentration at the exit of the ventilator in an intensive care unit in 2012

 Table II. Desflurane exposure

Location	Method (year)
Pre-operative	Workers' breathing area (2011)
	Patient's breathing area (2012)
	Workers' breathing area (2012)
Operating rooms	Workers' breathing area (2012)
Day surgery	Workers' breathing area (2012)
Post- operative	Patient's breathing area (2012) Workers' breathing area (2012)

LOD: Limit of detection

Sevoflurane concentration

- < 0.07 ppm
- < 0.10 ppm
- 1 sample at 0.08 ppm
- 1 sample at 0.08 ppm,
- 2 samples < LOD
- Mean[min-max]: 0.23[0.11-0.42] ppm Mean[min-max]: 0.16[0.11-0.29] ppm
- 2 samples < 0.08 ppm
- Overall mean: 0.48 ppm
- Mean[min-max]: 0.24[0.15-0.41] ppm

Desflurane concentration

- 1 sample at 0.029 ppm
- < 0.029 ppm
- < 0.04 ppm
- 1 sample at 0.029 ppm, 2 samples < LOD
- < 0.04 ppm
- Mean[min-max]: 7.79[0.25-21.6] ppm Mean[min-max]: 0.43[0.33-0.68] ppm

Recommendations

Recommendations that applies to managers

Acquisition: Choose products that limits risks of exposure. **Training:** Create a program of information about the risks of exposure. **Installations**: Install a gas recovery system to remove the waste anaesthetic gases from the operating room. Install a ventilation system with an adequate number of air changes per hour. **Reception**: Make sur anesthetic gases containers are identified. Receive and remove outer packaging in a designated area. Have a policy and procedure on the reception.

Storage: Choose a storage space that limits risks. **Transportation**: Avoid exposure during transportation. machines are regularly maintained. Surveillance: Developp a surveillance program and keep your air sampling results.

Waste management: Have a policy and procedure on waste management. Accidents: Have a policy and procedure on accidental exposures.

Recommendations that applies to workers Working pratices: Have good working pratices, such as:

- Check anaesthesia machines before use for breaks, negative pressure, etc
- Start the ventilation before any manipulation
- Start the gas recovery system before any manipulation, and make sure it is connected
- flow
- Fill vaporisors in a hood
- Use the lowest possible infusion rate
- Stop gas flow before disconnecting the patient
- Use the right personnal protection equipment

Conclusions

- North-America.

- intensive care unit.
- areas.
- units.
- hospital.

References : Tanguay C, Legris M, Bussières JF, Exposition professionnelle aux gaz anesthésiques pour inhalation partie 2. Bulletin d'information toxicologique 2013;29(3):98-121.

Contact: jf.bussieres@ssss.gouv.qc.ca Funding: none Conflict of interest: none Poster presented at the 2013 ASHP Midyear Clinical Meeting, Orlando (Florida)

- **Maintenance:** Make sure the ventilation of the operating room, and anesthesia

• Wait for the mask or laryngal tube to be correctly connected before starting gas

Make sure all waste gases are eliminated before disconnecting

• Few studies exist about environmental monitoring of waste anaesthetic gases in

 Waste anaesthetic gases concentrations were low in workers' breathing zones. • The post-operative care unit was the location where the highest concentrations of sevoflurane and desflurane were found.

Sevoflurane was still exhaled more than five hours post-operation in the

 This study highlights the importance of adequate ventilation throughout the anaesthetic gases use process, including storage areas and post-operative care

Scavenging of anaesthetic gases should also be done also in intensive-care

Pharmacists must be involved in optimal anaesthetic gases use throughout the